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Abstract. The nucleus '52Sm is characterized by a variety of low-energy
collective modes, conventionally described as rotations, 8 vibrations, and v
vibrations. Recently, it has been suggested that 1528m is at a critical point
between spherical and deformed collective phases. Consequently, 152Sm is
being studied by a variety of techniques, including radioactive decay, multi-
step Coulomb excitation, in-beam (a,2n7y) <y-ray spectroscopy, and (n,n'y)
spectroscopy. The present work focuses on the latter two reactions; these have
been used to investigate the low-lying bands associated with the octupole degree
of freedom, including one built on the first excited 01 band. In addition, the
K™ = 41 hexadecapole vibrational band has been identified.

E-mail: pgarrett@physics.uoguelph.ca

1. Introduction

The N = 90 shape transition region has long been of interest due to the rapid evolution
of structure that occurs in spanning the nuclei from N = 88 to N = 92. Nuclei with
N < 88 have level schemes that resemble those expected for “spherical” vibrational
nuclei, whereas those for N > 92 resemble well-deformed prolate rotors. The N = 90
nuclei, especially '°°Nd, 1*2Sm, and '°*Gd, lie at the centre of the transition between
these two shapes, and a series [1-10] of two-neutron-transfer reactions provided strong
evidence for shape coexistence, with excited “spherical” structures coexisting with
more-deformed ground states. This picture changed little for more than 30 years until
it was suggested [11] that the 0] state in 1°2Sm was a spherical state, with multiphonon
structures being built upon it, and this was an example of a “phase” coexistence [12-
15], The phase coexistence picture differs from the idea of shape coexistence arising
from intruder orbitals in that it depends on a critical value of a control parameter
related to €/x, the parameters for the Casimir operators C; (U5) and C»(SU3) [12-15]
in the IBM. Building on this idea, Iachello [16] developed an analytical solution for the
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Bohr Hamiltonian assuming a square-well potential in 3, believed to approximate the
phase-coexistence potential, and the N = 90 isotones, '3°Nd and '52Sm in particular,
were cited [17] as the first empirical examples of this new critical point solution, dubbed
X (5). Other examples of X (5) were soon suggested (see, for example, Refs. [18-20]). It
has been pointed out [21, 22], however, that other descriptions of the shape transitional
region appear to compare to the known experimental data just as well, if not better
than, the X (5) model.

It has been highlighted, especially by Burke [21], that current data does not
distinguish between different competing models for the structure of *2Sm. The need
to perform thorough tests of the predictions of the phase-coexistence X (5) model
is clear, as this would have a profound impact on our understanding of nuclear
collectivity. With this in mind, a far-reaching programme of detailed spectroscopy into
the N = 90 isotones has been undertaken. This programme involves the use of a variety
of techniques, including both in-beam and decay measurements, to perform detailed
spectroscopy of non-yrast states. The experiments performed on '2Sm to date include
152Ey decay [23] using the 87 spectrometer at Lawrence Berkeley National Laboratory
(LBNL), multiple Coulomb excitation [24] of a !>?Sm beam on a ?°*Pb target using
CHICO and GAMMASPHERE at LBNL, decay of *2Pm at the Studsvik Research
Reactor, a »*Nd(a, 2n7) reaction using the HORUS spectrometer at the University
of Cologne, and the 1°2Sm(n,n'y) reaction at the University of Kentucky. In the
present work, some preliminary findings from the latter two in-beam experiments are
described.

2. Experimental details

Fusion-evaporation reactions are powerful spectroscopic tools in that they are
compound nuclear reactions, and hence levels are populated in a statistical manner
with no sensitivity to their structure. Levels can be populated with large values of
angular momentum. In the case of 12Sm, however, there are very few stable beam-
target combinations that can be used. Of the possible reactions, the *°Nd(a, 2n-)
reaction was chosen for its ability to populate non-yrast states [25], and the fact
that it brings in a moderate amount of angular momentum. In one of the first
experiments with the new HORUS spectrometer at the Cologne tandem accelerator
facility, beams of several pnA of 22.5 MeV « particles bombarded targets of **°Nd. The
HORUS spectrometer consisted of 1 EUROBALL cluster detector and 9 conventional
coaxial detectors mounted in a cube-like arrangement surrounding the target position.
Approximately 2 x 10° yy-coincidence events were recorded, of which 1 x 10° were
sorted into a yy matrix (events in adjacent germanium crystals of the cluster detector
accounted for approximately % of all events). To complement the data at intermediate
spin obtained from the (a,2n7y) reaction, the (n,n'~) reaction was chosen. It also
offers comprehensive population up to = 6%, and level lifetimes can be extracted
with a Doppler-shift attenuation method analysis. A series of experiments, including
excitation functions, angular distributions, and v coincidences, was performed at the
University of Kentucky accelerator facility.

3. Results and discussion

Figure 1 is a partial level scheme that shows the K = 47 hexadecapole band that was
established from results of vy coincidences following the («, 2n) reaction. The spin of
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the band head was assigned from the (n,n’'y) data. The assignment of hexadecapole
character is based on the known systematics of K = 4T bands in the region [26], and
its population in single-nucleon transfer work [27]. Its observation at only 1.6 times
the v-band energy implies that the hexadecapole degree of freedom is important for
low-lying levels in 12Sm, as was indicated by the large B(E4;4] — 0F;) value [28].

Kﬂ=4+
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Figure 1. Results from analysis of the °Nd(a,2nvy) coincidence relations
establishing a K™ = 41 band at 1757 keV in 152Sm. For K™ assignments, see
Fig. 2 and (for the 1613 state) Ref. [29].

The octupole bands with K™ = 0~ (at 963 keV), K™ = 1~ (at 1510 keV), and
K™ = 27 (at 1650 keV) were observed up to relatively high spin in the (o, 2n) data.
At low-spins, level lifetimes had been established from a previous (n,n'sy) study [30]
and in the present work. Some of the B(E1) values (in 107% Wu) for decay from
the known K™ = 0~ and K™ = 1~ bands are shown in Fig. 2. Of note are the
large B(E1; K™ = 0~ — gsb) values, of 4-8 107*Wu, compared to other known E1
transitions in this nucleus (for example, decay from the K™ = 1~ states). Moreover,
a series of levels, beginning with the 1~ level at 1681 keV, a 3~ level at 1779 keV,
and a tentative 5~ level at 1976, have an energy spacing and decay pattern to the
first K™ = 0% band strongly similar to the first K™ = 0~ band and its decay to the
ground state band. The expected energy for an octupole excitation built on the first
K™ =07 band of 685+963=1648 keV matches well the observed energy of 1681 keV.
The extracted B(E1; K™ = 0~ — K™ = 0F) values for the 1~ and 3~ levels of 2-5
10~*Wu also strongly favour its identification as an octupole excitation built on the
685-keV K™ = O;" band. This implies that the octupole degrees of freedom are also
playing a significant role in the low-lying structure of *>Sm.

4. Conclusions

The K™ = 4% hexadecapole band has been observed at 1757 keV, fitting well the
systematics of hexadecapole bands in this mass region. The octupole bands have
been investigated, and the K™ = 0~ state built on the K™ = 0 level is suggested.
More details will be published in Ref. [31], and the implications on the shape/phase
coexistence models are currently being studied. However, the appearence of the second
K™ = 0~ band would seem to imply that the 0% state at 684 keV does not have a
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Figure 2. Partial level scheme displaying the octupole bands in %2Sm. Only
the strong FE1 transitions between bands are shown. Widths of the arrows are
proportional to the B(E1) values, which are shown in 10~3Wu on the transitions.

“spherical-phonon nature”, as was suggested earlier in Ref. [11].

This work was performed under the auspices of the U.S. Department of Energy by
the University of California, Lawrence Livermore National Laboratory under contracts
no. W-7403-ENG-48.
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